CSpace
All-optical modulation based on MoS2-Plasmonic nanoslit hybrid structures
Sun, Feiying1; Nie, Changbin2; Wei, Xingzhan2; Mao, Hu3; Zhang, Yupeng1; Wang, Guo Ping1
2021-11-01
摘要Two-dimensional (2D) materials with excellent optical properties and complementary metal-oxide-semiconductor (CMOS) compatibility have promising application prospects for developing highly efficient, small-scale all-optical modulators. However, due to the weak nonlinear light-material interaction, high power density and large contact area are usually required, resulting in low light modulation efficiency. In addition, the use of such large-band-gap materials limits the modulation wavelength. In this study, we propose an all-optical modulator integrated Si waveguide and single-layer MoS2 with a plasmonic nanoslit, wherein modulation and signal light beams are converted into plasmon through nanoslit confinement and together are strongly coupled to 2D MoS2. This enables MoS2 to absorb signal light with photon energies less than the bandgap, thereby achieving high-efficiency amplitude modulation at 1550 nm. As a result, the modulation efficiency of the device is up to 0.41 dB mu m(-1), and the effective size is only 9.7 mu m. Compared with other 2D material-based all-optical modulators, this fabricated device exhibits excellent light modulation efficiency with a micron-level size, which is potential in small-scale optical modulators and chip-integration applications. Moreover, the MoS2 plasmonic nanoslit modulator also provides an opportunity for TMDs in the application of infrared optoelectronics.
关键词all-optical modulator intraband transition MoS2 plasmonic nanoslit waveguide
DOI10.1515/nanoph-2021-0279
发表期刊NANOPHOTONICS
ISSN2192-8606
卷号10期号:16页码:3957-3965
通讯作者Zhang, Yupeng(ypzhang@szu.edu.cn)
收录类别SCI
WOS记录号WOS:000720743600003
语种英语