CSpace
Ultra-high average figure of merit in synergistic band engineered SnxNa1-xSe0.9S0.1 single crystals
Peng, Kunling1,2; Zhang, Bin3; Wu, Hong1,2; Cao, Xianlong4; Li, Ang3; Yang, Dingfeng3; Lu, Xu1; Wang, Guoyu2; Han, Xiaodong3; Uher, Ctirad5
2018-06-01
摘要Thermal-electricity conversion is one of the most promising routes to harvest heat and convert it as easily storable and deliverable electric energy. Significant progress has been made since the discovery of Seebeck effect in 1821, particularly, the figure of merit zT approached a record high value of 2.6 in 2014. However, for thermoelectric devices, high average zT values (zT(ave)) over the operating temperature range is more important as it is directly related to the conversion efficiency (eta). Approaching highly stable and repeatable ultra-high zT(ave) for Te-free materials has been historically challenging over the past century though exciting progress with zT(ave) well above 1.10 was made recently. Here, through synergistic band engineering strategy for single crystalline SnSe, we report a series of record high zT(ave) over a wide temperature range, approaching similar to 1.60 in the range from 300 K to 923 K in Na-doped SnSe0.9S0.1 solid solution single crystals, with the maximum zT of 2.3 at 773 K. These ultra-high thermoelectric performance derive from the new multiple valence band extrema near the band edges in SnSe0.9S0.1 and the shift of Fermi level towards the multi-valley bands through Na doping which introduce additional carrier pockets to attend electrical transport. These effects result in an optimized ultrahigh power factor exceeding 4.0 mW m(-1) K-2 in Sn0.97Na0.03Se0.9S0.1 single crystals. Combined with the extremely lowered thermal conductivity attributed from the intrinsic anhar-monicity and point defect phonon scattering, the series of ultra-high zT(ave) and a record high calculated conversion efficiency of 21% over a wide temperature range are approached.
DOI10.1016/j.mattod.2017.11
发表期刊MATERIALS TODAY
ISSN1369-7021
卷号21期号:5页码:501-507
通讯作者Zhou, Xiaoyuan(xiaoyuan2013@cqu.edu.cn)
收录类别SCI
WOS记录号WOS:000438779000017
语种英语