CSpace

浏览/检索结果: 共22条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Maximum Entropy Policy for Long-Term Fairness in Interactive Recommender Systems 期刊论文
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 卷号: 17, 期号: 3, 页码: 1029-1043
作者:  Shi, Xiaoyu;  Liu, Quanliang;  Xie, Hong;  Bai, Yanan;  Shang, Mingsheng
收藏  |  浏览/下载:7/0  |  提交时间:2024/08/16
Entropy  Recommender systems  Training  Feedback loop  Training data  Robustness  Real-time systems  Long-term fairness  maximum entropy policy  popularity bias  recommender system  reinforcement learning  web services  
Neighbor importance-aware graph collaborative filtering for item recommendation 期刊论文
NEUROCOMPUTING, 2023, 卷号: 549, 页码: 12
作者:  Wang, Qingxian;  Wu, Suqiang;  Bai, Yanan;  Liu, Quanliang;  Shi, Xiaoyu
收藏  |  浏览/下载:36/0  |  提交时间:2023/12/25
Graph neural networks  Recommender system  Node importance  Collaborative filtering  Representation learning  
Generalized Nesterov's Acceleration-Incorporated, Non-Negative and Adaptive Latent Factor Analysis 期刊论文
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 卷号: 15, 期号: 5, 页码: 2809-2823
作者:  Luo, Xin;  Zhou, Yue;  Liu, Zhigang;  Hu, Lun;  Zhou, MengChu
收藏  |  浏览/下载:106/0  |  提交时间:2022/12/26
Computational modeling  Acceleration  Sparse matrices  Adaptation models  Training  Data models  Convergence  Services computing  service application  big data  latent factor analysis  non-negative latent factor model  high-dimensional and sparse matrix  recommender system  missing data  
Large-Scale and Scalable Latent Factor Analysis via Distributed Alternative Stochastic Gradient Descent for Recommender Systems 期刊论文
IEEE TRANSACTIONS ON BIG DATA, 2022, 卷号: 8, 期号: 2, 页码: 420-431
作者:  Shi, Xiaoyu;  He, Qiang;  Luo, Xin;  Bai, Yanan;  Shang, Mingsheng
收藏  |  浏览/下载:88/0  |  提交时间:2022/08/22
Recommender systems  Training  Optimization  Big Data  Cloud computing  Computational modeling  Sparse matrices  Recommender system  latent factor analysis  high-dimensional and sparse matrices  alternative stochastic gradient descent  distributed computing  
Non-Negative Latent Factor Model Based on beta-Divergence for Recommender Systems 期刊论文
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 卷号: 51, 期号: 8, 页码: 4612-4623
作者:  Xin, Luo;  Yuan, Ye;  Zhou, MengChu;  Liu, Zhigang;  Shang, Mingsheng
收藏  |  浏览/下载:156/0  |  提交时间:2021/08/20
beta-divergence  big data  high-dimensional and sparse (HiDS) matrix  industrial application  learning algorithm  non-negative latent factor (NLF) analysis  recommender system  
A Deep Latent Factor Model for High-Dimensional and Sparse Matrices in Recommender Systems 期刊论文
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 卷号: 51, 期号: 7, 页码: 4285-4296
作者:  Wu, Di;  Luo, Xin;  Shang, Mingsheng;  He, Yi;  Wang, Guoyin;  Zhou, MengChu
收藏  |  浏览/下载:238/0  |  提交时间:2021/08/20
Big data  deep model  high-dimensional and sparse (HiDS) matrix  latent factor (LF) analysis  recommender system (RS)  
An Instance-Frequency-Weighted Regularization Scheme for Non-Negative Latent Factor Analysis on High-Dimensional and Sparse Data 期刊论文
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 卷号: 51, 期号: 6, 页码: 3522-3532
作者:  Luo, Xin;  Wang, Zidong;  Shang, Mingsheng
收藏  |  浏览/下载:108/0  |  提交时间:2021/08/20
High-dimensional and sparse (HiDS) data  industrial application  instance-frequency  non-negative latent factor analysis (NLFA)  recommender system  regularization  
An L-1-and-L-2-Norm-Oriented Latent Factor Model for Recommender Systems 期刊论文
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 页码: 14
作者:  Wu, Di;  Shang, Mingsheng;  Luo, Xin;  Wang, Zidong
收藏  |  浏览/下载:59/0  |  提交时间:2022/08/22
High-dimensional and sparse (HiDS) matrix  latent factor (LF) analysis  L-1 norm  L-2 norm  recommender system (RS)  
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 期刊论文
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 卷号: 8, 期号: 4, 页码: 796-805
作者:  Wu, Di;  Luo, Xin
收藏  |  浏览/下载:100/0  |  提交时间:2021/05/17
High-dimensional and sparse matrix  L-1-norm  L-2-norm  latent factor model  recommender system  smooth L-1-norm  
Algorithms of Unconstrained Non-Negative Latent Factor Analysis for Recommender Systems 期刊论文
IEEE TRANSACTIONS ON BIG DATA, 2021, 卷号: 7, 期号: 1, 页码: 227-240
作者:  Luo, Xin;  Zhou, Mengchu;  Li, Shuai;  Wu, Di;  Liu, Zhigang;  Shang, Mingsheng
收藏  |  浏览/下载:163/0  |  提交时间:2021/05/17
Data models  Training  Sparse matrices  Recommender systems  Computational modeling  Big Data  Scalability  Non-negative latent factor analysis  non-negativity  latent factor analysis  unconstrained optimization  high-dimensional and sparse matrix  collaborative filtering  recommender system  big data