×
验证码:
换一张
忘记密码?
记住我
×
登录
中文版
|
English
中国科学院重庆绿色智能技术研究院机构知识库
KMS Chongqing Institute of Green and Intelligent Technology, CAS
登录
注册
ALL
ORCID
题名
作者
发表日期
学科领域
关键词
文献类型
出处
存缴日期
收录类别
出版者
资助项目
学科门类
学习讨论厅
首页
研究单元&专题
作者
文献类型
学科分类
知识图谱
新闻&公告
在结果中检索
研究单元&专题
大数据挖掘及应用中心 [7]
作者
罗辛 [18]
尚明生 [16]
史晓雨 [6]
吴迪 [4]
袁野 [2]
徐建军 [1]
更多...
文献类型
期刊论文 [22]
发表日期
2024 [1]
2023 [1]
2022 [2]
2021 [10]
2020 [1]
2018 [3]
更多...
语种
英语 [22]
出处
IEEE TRANS... [5]
NEUROCOMPU... [3]
PHYSICA A-... [3]
IEEE TRANS... [2]
IEEE TRANS... [2]
IEEE TRANS... [2]
更多...
资助项目
National ... [14]
National ... [13]
Pioneer H... [13]
Chongqing ... [7]
Chongqing ... [7]
Chongqing ... [7]
更多...
收录类别
SCI [21]
资助机构
×
知识图谱
CSpace
开始提交
已提交作品
待认领作品
已认领作品
未提交全文
收藏管理
QQ客服
官方微博
反馈留言
浏览/检索结果:
共22条,第1-10条
帮助
已选(
0
)
清除
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
WOS被引频次升序
WOS被引频次降序
题名升序
题名降序
期刊影响因子升序
期刊影响因子降序
作者升序
作者降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
Maximum Entropy Policy for Long-Term Fairness in Interactive Recommender Systems
期刊论文
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 卷号: 17, 期号: 3, 页码: 1029-1043
作者:
Shi, Xiaoyu
;
Liu, Quanliang
;
Xie, Hong
;
Bai, Yanan
;
Shang, Mingsheng
收藏
  |  
浏览/下载:7/0
  |  
提交时间:2024/08/16
Entropy
Recommender systems
Training
Feedback loop
Training data
Robustness
Real-time systems
Long-term fairness
maximum entropy policy
popularity bias
recommender system
reinforcement learning
web services
Neighbor importance-aware graph collaborative filtering for item recommendation
期刊论文
NEUROCOMPUTING, 2023, 卷号: 549, 页码: 12
作者:
Wang, Qingxian
;
Wu, Suqiang
;
Bai, Yanan
;
Liu, Quanliang
;
Shi, Xiaoyu
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2023/12/25
Graph neural networks
Recommender system
Node importance
Collaborative filtering
Representation learning
Generalized Nesterov's Acceleration-Incorporated, Non-Negative and Adaptive Latent Factor Analysis
期刊论文
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 卷号: 15, 期号: 5, 页码: 2809-2823
作者:
Luo, Xin
;
Zhou, Yue
;
Liu, Zhigang
;
Hu, Lun
;
Zhou, MengChu
收藏
  |  
浏览/下载:106/0
  |  
提交时间:2022/12/26
Computational modeling
Acceleration
Sparse matrices
Adaptation models
Training
Data models
Convergence
Services computing
service application
big data
latent factor analysis
non-negative latent factor model
high-dimensional and sparse matrix
recommender system
missing data
Large-Scale and Scalable Latent Factor Analysis via Distributed Alternative Stochastic Gradient Descent for Recommender Systems
期刊论文
IEEE TRANSACTIONS ON BIG DATA, 2022, 卷号: 8, 期号: 2, 页码: 420-431
作者:
Shi, Xiaoyu
;
He, Qiang
;
Luo, Xin
;
Bai, Yanan
;
Shang, Mingsheng
收藏
  |  
浏览/下载:88/0
  |  
提交时间:2022/08/22
Recommender systems
Training
Optimization
Big Data
Cloud computing
Computational modeling
Sparse matrices
Recommender system
latent factor analysis
high-dimensional and sparse matrices
alternative stochastic gradient descent
distributed computing
Non-Negative Latent Factor Model Based on beta-Divergence for Recommender Systems
期刊论文
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 卷号: 51, 期号: 8, 页码: 4612-4623
作者:
Xin, Luo
;
Yuan, Ye
;
Zhou, MengChu
;
Liu, Zhigang
;
Shang, Mingsheng
收藏
  |  
浏览/下载:156/0
  |  
提交时间:2021/08/20
beta-divergence
big data
high-dimensional and sparse (HiDS) matrix
industrial application
learning algorithm
non-negative latent factor (NLF) analysis
recommender system
A Deep Latent Factor Model for High-Dimensional and Sparse Matrices in Recommender Systems
期刊论文
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 卷号: 51, 期号: 7, 页码: 4285-4296
作者:
Wu, Di
;
Luo, Xin
;
Shang, Mingsheng
;
He, Yi
;
Wang, Guoyin
;
Zhou, MengChu
收藏
  |  
浏览/下载:238/0
  |  
提交时间:2021/08/20
Big data
deep model
high-dimensional and sparse (HiDS) matrix
latent factor (LF) analysis
recommender system (RS)
An Instance-Frequency-Weighted Regularization Scheme for Non-Negative Latent Factor Analysis on High-Dimensional and Sparse Data
期刊论文
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 卷号: 51, 期号: 6, 页码: 3522-3532
作者:
Luo, Xin
;
Wang, Zidong
;
Shang, Mingsheng
收藏
  |  
浏览/下载:108/0
  |  
提交时间:2021/08/20
High-dimensional and sparse (HiDS) data
industrial application
instance-frequency
non-negative latent factor analysis (NLFA)
recommender system
regularization
An L-1-and-L-2-Norm-Oriented Latent Factor Model for Recommender Systems
期刊论文
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 页码: 14
作者:
Wu, Di
;
Shang, Mingsheng
;
Luo, Xin
;
Wang, Zidong
收藏
  |  
浏览/下载:59/0
  |  
提交时间:2022/08/22
High-dimensional and sparse (HiDS) matrix
latent factor (LF) analysis
L-1 norm
L-2 norm
recommender system (RS)
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data
期刊论文
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 卷号: 8, 期号: 4, 页码: 796-805
作者:
Wu, Di
;
Luo, Xin
收藏
  |  
浏览/下载:100/0
  |  
提交时间:2021/05/17
High-dimensional and sparse matrix
L-1-norm
L-2-norm
latent factor model
recommender system
smooth L-1-norm
Algorithms of Unconstrained Non-Negative Latent Factor Analysis for Recommender Systems
期刊论文
IEEE TRANSACTIONS ON BIG DATA, 2021, 卷号: 7, 期号: 1, 页码: 227-240
作者:
Luo, Xin
;
Zhou, Mengchu
;
Li, Shuai
;
Wu, Di
;
Liu, Zhigang
;
Shang, Mingsheng
收藏
  |  
浏览/下载:163/0
  |  
提交时间:2021/05/17
Data models
Training
Sparse matrices
Recommender systems
Computational modeling
Big Data
Scalability
Non-negative latent factor analysis
non-negativity
latent factor analysis
unconstrained optimization
high-dimensional and sparse matrix
collaborative filtering
recommender system
big data